JOINT MICROLENSING AND REVERBERATION MAPPING ANALYSIS OF HE0435-1223: THE VERY EARLY DAYS

Anthea King Kelly Denney, Kathleen Labrie, Rachel Webster, Nick Bate, Matt O'Dowd,

HE0435-1223

- Quadruply-lensed quasar at z = 1.689
- First lensed quasar to be reverberation mapped
- Microlensing and reverberation mapping only viable method for probing the size scales of accretion disk and BLR
- So can be used to derive complementary size constraints of these emission regions.

Image credit: Wong et al. 2017

Main Science Questions

- Do the size constraints found from RM and microlensing agree?
- What does this tell us about BLR structure? Transverse vs radial size measurements.
- This object will be one of the highest redshift quasar RMed, does the found lag agree with previous findings/expectations from R-L relationship?
- Can we obtain line wings and line centre size constraints?
- Check whether we can perform snapshot microlensing without knowledge of underlying continuum variations?
- Do we see change in microlensing signal in the 6 month period?
- Geraint Can we see the changing in BLR size with luminosity in microlensing?

Original Program

Title:	Reverberation Mapping of a Gravitationally-lensed Quasar
Principal Investigator:	Kelly D. Denney
PI institution:	Dark Cosmology Centre, Niels Bohr Institute, Juliane Maries Vej 30
	DK-2100 Copenhagen, Denmark
PI status:	PhD
PI phone/e-mail:	+45 353 25 927 / kelly@dark-cosmology.dk
Co-Investigators:	Frederic Courbin: Laboratoire d'Astrophysique, École
	Polytechnique Fédérale de Lausanne (EPFL), Observatoire de
	Sauverny, frederic.courbin@epfl.ch
	Christopher S. Kochanek: Ohio State
	University, ckochanek@astronomy.ohio-state.edu
	Chelsea L. MacLeod: U.S. Naval Academy, macleod@usna.edu
	Georges Meylan: Laboratoire d'Astrophysique, École
	Polytechnique Fédérale de Lausanne (EPFL), Observatoire de
	Sauverny, georges.meylan@epfl.ch
	Christopher W. Morgan: U.S. Naval Academy, cmorgan@usna.edu
	Ana Mosquera: Ohio State
	University, ana.mosquera.rovira@gmail.com
	Leonidas Moustakas: Jet Propulsion Laboratory,
	Caltech, leonidas@jpl.nasa.gov
	Christopher A. Onken: Research School of
	Astronomy and Astrophysics, The Australian National
	University, onken@mso.anu.edu.au
	Bradley M. Peterson: Ohio State
	University, peterson@astronomy.ohio-state.edu
	Dominique Sluse: Argelander Institut fuer Astronomie, Universitaet
	Bonn, dsluse@astro.uni-bonn.de

Photometric light curves

- 13 years of monitoring
- Average observing cadence was 11 &16 days

Photometric light curves

- 13 years of monitoring
- Average observing cadence was 11 &16 days

GMOS IFU data

- Gemini South
- 13 epochs
- Taken over 6 months
- C IV lag is estimated to be 24-70 days
- Delays (Bonvin et al 2017):
 - AB:-8.8 days
 - AC:-1.1 days
 - AD:-13.8 days

	J	<u>ul</u>	y 2	01	3			August 2013								September 2013							
S	М	Т	W	Т	F	S	S	М	Т	W	Т	F	S	S	М	т	W	Т	F	S			
	1	2	3	4	5	6					1	2	3	1	2	3	4	5	6	7			
7	8	9	10	11	12	13	4	5	6	7	8	9	10	8	9	10	11	12	13	14			
14	15	16	17	18	19	20	11	12	13	14	15	16	17	15	16	17	18	19	20	21			
21	22	23	24	25	26	27	18	19	20	21	22	23	24	22	23	24	25	26	27	28			
28	29	30	31				25	26	27	28	29	30	31	29	30								
								10	- /				01		00								
	00	- al	~ ~	20	12			Neverber 2012							December 2012								
	October 2013 November 2013													Dec		DET		UT3	_				
S	М	т	W	т	F	S	S	М	т	W	т	F	S	S	М	т	W	т	F	S			
		1	2	3	4	5						1	2	1	2	3	4	5	6	7			
6	7	8	9	10	11	12	3	4	5	6	7	8	9	8	9	10	11	12	13	14			
13	14	15	16	17	18	19	10	11	12	13	14	15	16	15	16	17	18	19	20	21			
20	21	22	23	24	25	26	17	18	19	20	21	22	23	22	23	24	25	26	27	28			
27	28	29	30	31			24	25	26	27	28	29	30	29	30	31							
	Ja	nua	ıry	20)14			February 2014							March 2014								
S	М	т	W	Т	F	S	S	М	т	W	т	F	S	S	М	т	W	т	F	S			
			1	2	3	4							1							I			
5	6	7	8	9	10	11	2	3	4	5	6	7	8	2	3	4	5	6	7	8			
12	13	14	15	16	17	18	9	10	11	12	13	14	15	9	10	N	12	13	14	15			
19	20	21	22	23	24	25	16	17	18	19	20	21	22	16	17	18	19	20	21	22			
26	27	28	29	30	31		23	24	25	26	27	28		23	24	25	26	27	20	29			
20	21	20	29	50	51		25	2 4	42	20	21	20		20	24	25	20		20	22			

Observed epoch

Inferred epoch

Observed epoch split into 2 half nights

Early Results

 Early Results – First night reduced (for the first and a half times)

Early results

Early results

Major issue

- Flux calibration was supposed to be done using galaxy flux, compared to known HST flux. However, galaxy flux in IFU data low.
- Could we scale up to match Cosmograil data. Need a good knowledge of microlensing.
- Any help welcome!

