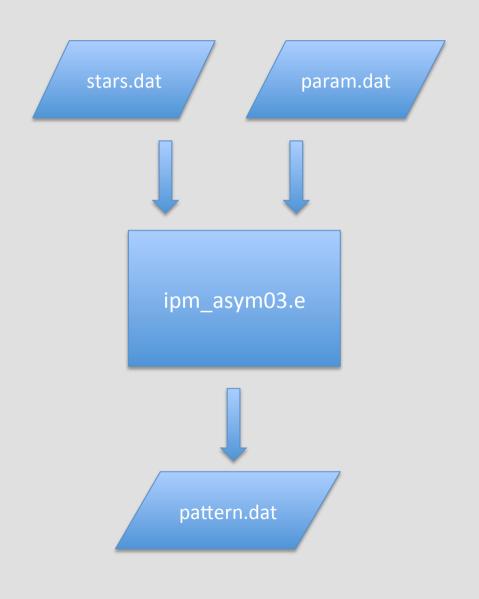
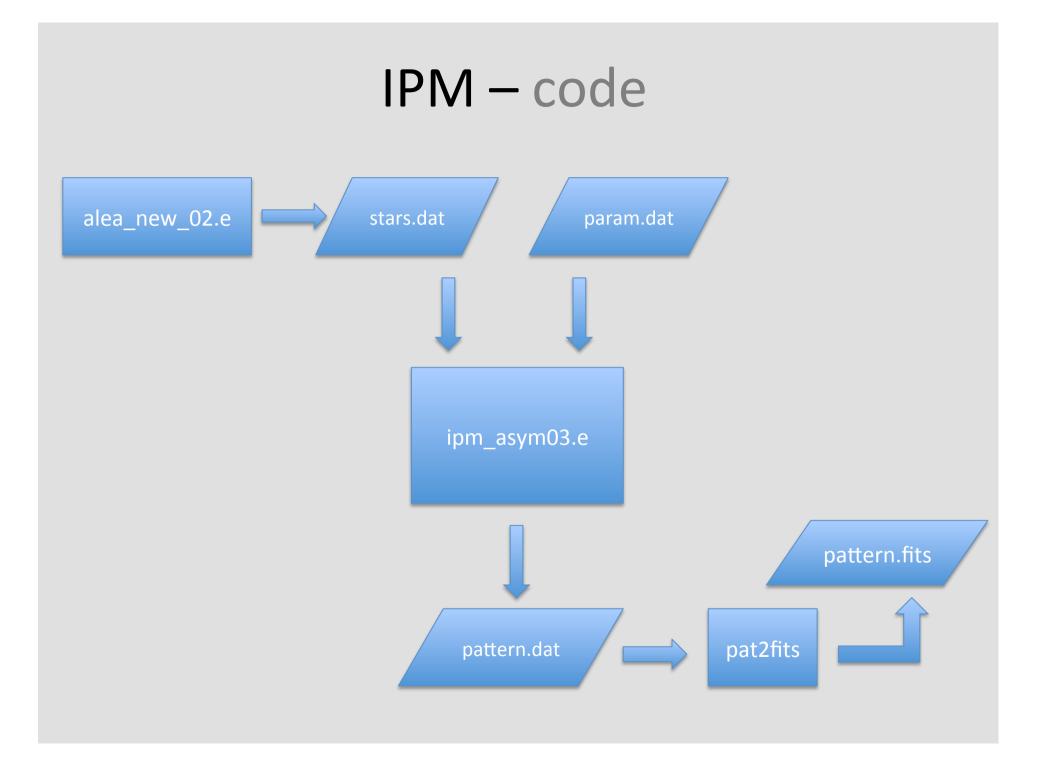
Inverse Polygon Mapping – guide


Mediavilla et al., 2006, ApJ, 653, 942 Mediavilla et al., 2011, ApJ, 741, 42


Apportioning transformed cells – algorithm

- We have an algorithm to know what fraction of the image-plane area is collected by each one of the pixels of the magnification map.
- According to Green's theorem, the area of a simply connected region with boundary C is given by the line integral

$$\int_{\mathcal{C}} -y^2 \, dy^1$$

IPM – code

Input data and units – stars.dat

- stars.dat:
 - ASCII file with positions and masses for each microlens:

> - m_i in units of a fiducial (arbitrary) mass - $x_i^1 x_i^2$ in units of the Einstein radius of the fiducial mass

Input data and units – param.dat

- param.dat:
 - ASCII file with:

 $y_{1} n_{y}$ $x_{1} n_{x}$ $k_{stars} k_{smooth} \gamma$ 1

- $2y_1$ (size of the magnification map in Einstein radii)
- $2x_1$ (size of the largest dimension of the shooting region, $x_1=1.5 \times \max(y_1/|1-k\pm\gamma|)$)
- $n_y \times n_y$ (number of pixels of the magnification map)
- $n_x X n_x$ (number of cells, i.e. rays, at the image plane)

Output data and units – pattern.dat

- pattern.dat:
 - ASCII file with $N=n_y \times n_y$ records (one per magnification map pixel):

μ₁ μ₂ ... μ_N

- μ_i (pixel magnification, i.e., flux ratio F/F₀)

Optimization – n_{rays}

- All the previous parameters are familiar to IRS users, and can adopt similar values that in IRS except the number of rays (cells), $n_{\rm x}$
- In typical IRS applications the critical quantity in terms of accuracy and computation time is the number of rays (cells) per *unlensed* pixel

$n_{rays} = (n_x \times 2y_1)^2 / (n_y \times 2x_1)^2 \approx 10 - 100$

- Using IPM, the important restriction is that the cell size should be significantly smaller than the Einstein radius, thus the important parameter is n_x and the dependence between computing time and number of pixels, n_y , is weak for IPM.
- Using IPM, a conservative, but easy to use rule, is to adopt n_{rays}=1 (for typical applications in which the pixel size is very much smaller than the Einstein radius)
- But substantially smaller values of n_{rays}<<1 (i.e. larger cells) can be considered to obtain magnification maps with huge savings in computation time

Summary – IPM

- The concepts and parameters of IPM are very similar to those familiar to IRS users (you can use it with little effort)
- The number of rays per unlensed pixel, n_{rays}, can be very much relaxed
- Deliver programs and instructions