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ApporBoning	transformed	cells	–	algorithm	

•  We	have	an	algorithm	to	know	what	fracBon	of	the	image-plane	area	is	
collected	by	each	one	of	the	pixels	of	the	magnificaBon	map.		

•  According	to	Green’s	theorem,	the	area	of	a	simply	connected	region	with	
boundary	C	is	given	by	the	line	integral		

	

the establishment of a limit in the iteration. In the numerical ex-
periments described below, we have used an even simpler algo-
rithm consisting of subdividing each rejected cell into a subgrid
of 16 ; 16 rays that are processed as in the inverse ray-shooting
method, assigning to each ray 1/ 16 ; 16ð Þ of the cell area (see
Fig. 7).

3.4. Apportioning of the Mapped Polygons
among the Source-Plane Pixels

A mapped polygon totally or partially covers one or more
of the pixels defined in the source plane. We need to know what
fraction of the image-plane cell area is collected by each one of
the pixels. According to Green’s theorem, the area of a simply
connected region with boundary C is given by the line integral
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where ( y1, y 2) are the source-plane coordinates.
The transformed polygon is defined by four straight lines (the

four polygon sides): y2AB y1ð Þ, y2BC y1ð Þ, y2
CD

y1ð Þ, and y2DA y1ð Þ. To
compute the area of the polygon subtended by a square pixel
of center (I, J ) and size 1, we should define the boundary of this
region from (1) the polygon sides, (2) the pixel sides, and (3) the
possible intersections of each polygon side with the pixel sides.
For the yAB polygon side, the coordinates of the intersections with
the bottom and top pixel sides ( y1AB#; y

2
AB#

! "
and y1ABþ; y

2
ABþ
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,

respectively) are obtained by solving

y2AB y1AB#
# $

¼ J # 0:5; ð18Þ

y2AB y1ABþ
# $

¼ J þ 0:5; ð19Þ

and the coordinates of the intersections of the other polygon
sides can be found in a similar way. Thus, it is straightforward
to find that the area of the polygon subtended by the pixel can
be written as the sum of four terms, one for each polygon side,

SIJ ¼ SAB þ SBC þ SCD þ SDA; ð20Þ

with

SAB ¼#
Z minð y1B; Iþ0:5; y1

ABþÞ

maxð y1
A
; I#0:5; y1

AB#Þ
y2AB # J þ 0:5

# $
dy1

#
Z minð y1B; Iþ0:5Þ

minð y1
B
; Iþ0:5; y1

ABþÞ
dy1; ð21Þ

where y1A and y
1
B are the y

1 coordinates of vertices A and B, y1A <
y1B, y

1
A < I þ 0:5, y1B > I # 0:5, and y1AB# < y1ABþ (if y1A > I þ

0:5 or y1B < I # 0:5, then SAB ¼ 0). The terms corresponding
to y1AB# > y1ABþ and for the other polygon sides can be easily ob-
tained. From these expressions it is simple to compute the frac-
tion of the polygon area corresponding to each pixel that, after
normalization to the image-plane cell area, is added to the pixel
magnification.

This procedure to calculate exactly the polygon area subtended
by a pixel can be easily generalized to any simply connected poly-
gon with an arbitrary number of sides. On the other hand, when
the transformed tetragon (or polygon, in general) is nonYsimply
connected (it may occur for image-plane cells of any geometry
enclosing a critical curve), we divide it into two simply connected
triangles and apply the same procedure to each of them (Kochanek

& Blandford [1987] and Keeton [2001] also use triangles to di-
vide cells, but at the image plane).

4. RESULTS: COMPARISON BETWEEN THE INVERSE
POLYGON-MAPPING AND THE INVERSE

RAY-SHOOTING METHODS

4.1. Point-Mass Lens

We study this case to compare both numerical methods, the
IRS and IPM, with an exact solution. The computed magnifica-
tion patterns correspond to a square region of size yl ¼ 6 at the
source plane (in Einstein radius units). The number of pixels at
the source plane is 2000 ; 2000. A square region of size xl ¼ 10
is considered at the image plane. According to the scheme pro-
posed in x 3, the first-order IPM algorithm that we apply con-
sists of (1) tessellation of the image plane using a square lattice,
(2) cell transformation, and (5) apportioning of the transformed
polygons among the covered pixels. Using the IPM, we compute
a magnification pattern considering image-plane cells of approx-
imately the same size as the source-plane pixels. Using the IRS,
we obtain several magnification patterns corresponding to 1, 71,
282, and 1024 rays pixel#1 in the absence of gravitational lens-
ing. A pattern from the exact analytical solution, !exact( y

1, y2), is
also computed. The relative difference of a given pattern!( y1, y 2)
with respect to the exact one is

!! y1; y2
# $

¼ ! y1; y2ð Þ # !exact y1; y2ð Þ
!exact y1; y2ð Þ : ð22Þ

The standard deviation, ", of !!( y1, y2) for each pattern is
given in Table 1. The IPM method with 1 ray per unlensed pixel
obtains a very high accuracy, an order of magnitude better than
that corresponding to the IRS with 1024 rays per unlensed pixel.
A dependence of the IRS relative error with the average number
of rays collected per pixel, " ¼ N#0:79&0:01, is found (see data in
Table 1), which is very close to the result of Kayser et al. (1986):
" ¼ N#3=4. According to this dependence, more than 25,000 rays
pixel#1 should be collected on average by the IRS to match the
IPM error. As commented above, the great advantage of the IPM
reflects that this method is based on a linear approximation to lens
mapping, while the IRS is based on a numerical simulation with
inherent noise.

In Table 1 we have also included the computing time of each
pattern, normalized to the computing time corresponding to the
IPMmethod. In principle, the IPM should have a great advantage,
since the number of rays computed with this method is consid-
erably smaller. However, the IPM includes significant overheads
corresponding to the relatively high computational weight of the
polygonal area apportioning with respect to the ray tracing. In the

TABLE 1

Point-Mass Lens

Method

Rays per

Unlensed Pixela
Rays per Pixel

(average)b
Error

(")c
Computing

Timed

IPM ................ 1.1 1.3 0.0004 1

IRS ................. 1.1 1.3 0.4 0.3

71 85 0.03 5.7

282 337 0.009 23

1024 1224 0.004 79

a Number of rays per unlensed pixel (see text).
b Average number of rays collected per pixel.
c Dispersion relative to the exact solution (see text).
d Computing time relative to the IPM computation (see text).
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IPM	–	code	

stars.dat	 param.dat	

ipm_asym03.e	

paRern.dat	



IPM	–	code	

stars.dat	 param.dat	

ipm_asym03.e	

paRern.dat	

alea_new_02.e	

pat2fits	

paRern.fits	



Input	data	and	units	–	stars.dat	
•  stars.dat: !

–  ASCII file with positions and masses for each 
microlens: !

!

x11 x12 m1!
x21 x22 m2!
...!

xn1 xn2 mn!
!

–  mi in units of a fiducial (arbitrary) mass!
–  xi1 xi2 in units of the Einstein radius of the 
fiducial mass!



Input	data	and	units	–	param.dat	
•  param.dat: !

–  ASCII file with:!
 !

yl ny!
xl nx!
kstars ksmooth γ
1!
!

–  2	yl (size of the magnification map in Einstein 
radii)!

–  2	xl (size of the largest dimension of the 
shooting region, xl=1.5 ✕ max(yl/|1-k±γ|))!

–  ny✕ny (number of pixels of the magnification map)!
–  nx✕nx  (number of cells, i.e. rays, at the image 
plane)!



Output	data	and	units	–	paRern.dat	

•  pattern.dat: !
–  ASCII file with N=ny ✕ ny records (one per 
magnification map pixel):!

 !
μl!
μ2!
…!
μN!
!

–  μi (pixel magnification, i.e., flux ratio F/F0)!
!



OpBmizaBon	–	nrays!
•  All the previous parameters are familiar to IRS users, and can 

adopt similar values that in IRS except the number of rays 
(cells), nx!

•  In typical IRS applications the critical quantity in terms of 
accuracy and computation time is the number of rays (cells) per 
unlensed pixel!

!
nrays = (nx✕2yl)2/(ny✕2xl)2 ≈ 10 – 100!!

•  Using IPM, the important restriction is that the cell size 
should be significantly smaller than the Einstein radius, thus 
the important parameter is nx and the dependence between 
computing time and number of pixels, ny, is weak for IPM. !

•  Using IPM, a conservative, but easy to use rule, is to adopt 
nrays=1 (for typical applications in which the pixel size is very 
much smaller than the Einstein radius) !

•  But substantially smaller values of nrays<<1 (i.e. larger cells) 
can be considered to obtain magnification maps with huge savings 
in computation time!



Summary	–	IPM	
•  The concepts and parameters of IPM are very 

similar to those familiar to IRS users (you can 
use it with little effort)!

•  The number of rays per unlensed pixel, nrays, can 
be very much relaxed!

•  Deliver programs and instructions!

!


